Skip to main content
Log in

A straightforward and practical method for integrating highly active Sm0.5Sr0.5CoO3 into a conventional La0.6Sr0.4Co0.2Fe0.8O3–Gd0.2Ce0.8O2 composite cathode

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The Sm0.5Sr0.5CoO3 (SSC) material is widely recognized as the most electrochemically active cathode material for solid oxide fuel cells (SOFCs). However, due to its poor thermo-mechanical and chemical compatibility with other cell components of the SOFC, it has been challenging to implement it as a cathode material. To address this issue, this study explores various architectural configurations of cathode, including layered and composite type structures, to identify the optimal approach to incorporating SSC material for enhanced SOFC performance. The study reveals that the most effective method of incorporating SSC material is through a mixture with the conventional La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and Ce0.9Gd0.1O2 (GDC) composite cathode materials. In particular, when the sinterability of GDC is enhanced through the addition of a sintering aid, it exhibits superior adhesion with the neighboring interfaces, which results in the highest performance characteristics while simultaneously maintaining excellent structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available from the corresponding author on a reasonable request.

References

  1. K. Yoshii, H. Abe, A. Nakamura, Mater. Res. Bull. 36(7–8), 1447 (2001)

    Article  CAS  Google Scholar 

  2. L. Chen, C. Lu, Z. Fang, Y. Lu, Y. Ni, Z. Xu, J. Phys. D Appl. Phys. 46, 105302 (2013)

    Article  Google Scholar 

  3. R. Scurtu, S. Somacescu, J. Calderon-Moreno, D. Culita, I. Bulimestru, N. Popa, A. Gulea, P. Osiceanu, J. Solid State Chem. 210(1), 53 (2014)

    Article  CAS  Google Scholar 

  4. B. Sathyamoorthy, A. Raja, G. Chandrasekaran, J Mater Sci. Mater. Electron. 29, 5098 (2018)

    Article  CAS  Google Scholar 

  5. K.H. Jung, S. Choi, H.H. Park, W.S. Seo, Curr. Appl. Phys. 11, 260 (2011)

    Article  Google Scholar 

  6. T. Arakawa, A. Yoshida, J. Shiokawa, Mater. Res. Bull. 15(3), 347 (1980)

    Article  CAS  Google Scholar 

  7. C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ion. 149(1–2), 11 (2002)

    Article  CAS  Google Scholar 

  8. T. Wu, Y. Zhao, R. Peng, C. Xia, Electrochim. Acta. 54, 4888 (2009)

    Article  CAS  Google Scholar 

  9. S. Lee, J. Kim, J.W. Son, J.H Lee, B.K. Kim, H.J Je, H.W. Lee, H. Song, K.J. Yoon, J. Power Sources 250, 15 (2014)

  10. S. Ahmed, W.W. Kazmi, A. Hussain, M.Z. Khan, S. Bibi, M. Saleem, R.H. Song, Z. Sajid, A. Ullah, M.K. Khan, J. Korean Ceram. Soc. 60(2), 272 (2023)

    Article  CAS  Google Scholar 

  11. L. Mathur, Y. Namgung, H. Kim, S.-J. Song, J. Korean Ceram. Soc. 60(4), 614 (2023)

    Article  CAS  Google Scholar 

  12. F. Wang, D. Chen, Z. Shao, J. Power Sources 216, 208 (2012)

    Article  CAS  Google Scholar 

  13. J. Chen, X. Yang, D. Wan, B. Li, L. Lei, T. Tian, B. Chi, F. Chen, Electrochim. Acta. 341, 136031 (2020)

    Article  CAS  Google Scholar 

  14. H. Shimada, Y. Fujishiro, J. Power Sources 302, 308 (2016)

    Article  CAS  Google Scholar 

  15. L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M.L. Liu, Adv. Mater. 20, 3280 (2008)

    Article  CAS  Google Scholar 

  16. Y.M. Guo, D.J. Chen, H.G. Shi, R. Ran, Z.P. Shao, Electrochim. Acta. 56, 2870 (2011)

    Article  CAS  Google Scholar 

  17. E.V. Tsipis, V.V. Kharton, J Solid State Electrochem. 12, 1367 (2008)

    Article  CAS  Google Scholar 

  18. H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Solid State Ion. 132, 279 (2000)

    Article  CAS  Google Scholar 

  19. H. Lv, Y.-J. Wu, B. Huang, B.-Y. Zhao, K.-A. Hu, Solid State Ion. 177, 901 (2006)

    Article  CAS  Google Scholar 

  20. H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ion. 100, 283 (1997)

    Article  CAS  Google Scholar 

  21. F.F. Dong, D.J. Chen, R. Ran, H. Park, C. Kwak, Z.P. Shao, Int. J. Hydrog. Energy 37, 4377 (2012)

    Article  CAS  Google Scholar 

  22. D. Skarmoutsos, F. Tietz, P. Nikolopoulos, Fuel Cells 1, 243 (2001)

    Article  CAS  Google Scholar 

  23. A.J. Jacobson, Chem. Mater. 22, 660 (2010)

    Article  CAS  Google Scholar 

  24. D.J. Chen, R. Ran, Z.P. Shao, J. Power Sources 195, 7187 (2010)

    Article  CAS  Google Scholar 

  25. Y. Huang, K. Ahn, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 151, 1592 (2004)

    Article  Google Scholar 

  26. J.R. Mawdsley, J.D. Carter, A.J. Kropf, B. Yildiz, V.A. Maroni, Int. J. Hydrog. Energy 34, 4198 (2009)

    Article  CAS  Google Scholar 

  27. N.E. Volkova, L.V. Khvostova, A.P. Galaida, L.Y. Gavrilova, V.A. Cherepanov, Chimica Techno Acta. 5(1), 55 (2018)

    Article  CAS  Google Scholar 

  28. Y. Zhang, J.D. Nicholas, J. Electrochem. Soc. 168, 024522 (2021)

    Article  CAS  Google Scholar 

  29. M. Han, Faraday Discuss. 182, 477 (2015)

    Article  Google Scholar 

  30. J.M. Vohs, R.J. Gorte, Adv. Mater. 21, 943 (2009)

    Article  CAS  Google Scholar 

  31. H. Zhang, F. Zhao, F.L. Chen, C.R. Xia, Solid State Ion. 192, 591 (2011)

    Article  CAS  Google Scholar 

  32. T.A. Schmauss, J.G. Railsback, M.Y. Lu, K.Y. Zhao, S.A. Barnett, J. Mater. Chem. A. 7, 27585 (2019)

    Article  CAS  Google Scholar 

  33. X. Lou, S. Wang, Z. Liu, L. Yang, M. Liu, Solid State Ion. 180(23), 1285 (2009)

    Article  CAS  Google Scholar 

  34. L. Almar, A. Tarancón, Electrochim. Acta. 235, 646 (2017)

    Article  CAS  Google Scholar 

  35. D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Energy Environ. Sci. 7, 552 (2014)

    Article  CAS  Google Scholar 

  36. J.D. Nicholas, S.A. Barnett, J. Elctrochem. Soc. 157, 536 (2010)

    Article  Google Scholar 

  37. X.Y. Lou, Z. Liu, S.Z. Wang, Y.H. Xiu, C.P. Wong, M.L. Liu, J Power Sources 195, 419 (2010)

    Article  CAS  Google Scholar 

  38. S.P. Jiang, Int. J. Hydrog. Energy 37, 449 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20193010032460), and partially supported by the institutional research program of KIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Ho Lee.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S.H., Park, SY., Kim, S. et al. A straightforward and practical method for integrating highly active Sm0.5Sr0.5CoO3 into a conventional La0.6Sr0.4Co0.2Fe0.8O3–Gd0.2Ce0.8O2 composite cathode. J. Korean Ceram. Soc. 61, 34–43 (2024). https://doi.org/10.1007/s43207-023-00327-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00327-z

Keywords

Navigation