Skip to main content
Log in

PrBa0.5Sr0.5Co1.5Fe0.5O5+δ composite cathode in protonic ceramic fuel cells

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The need for high performance of protonic ceramic fuel cells (PCFCs) has created significant interest in highly active cathode materials. Since a major charge carrier in PCFCs is proton, the use of triple conducting oxide (TCO) materials, in which oxygen ion, hole, and proton can be transported, is expected to improve the electrochemical performance of PCFCs. In this study, the applicability of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) cathode, known as TCO material, in PCFCs is investigated. The chemical compatibility of PBSCF with BaCe0.55Zr0.3Y0.15O3–δ (BCZY3) proton-conducting electrolyte at high temperature is examined by XRD. To improve the interfacial structure between BCZY3 electrolyte and single-phase PBSCF cathode, PBSCF-BCZY3 composite layer is inserted between both layers. The optimization of sintering temperature and thickness of cathode results in the successful fabrication of PCFCs, exhibiting low ohmic resistance and high electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Kirubakaran, S. Jain, R. Nema, A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13(9), 2430–2440 (2009)

    Article  CAS  Google Scholar 

  2. O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853 (2014)

    Article  CAS  Google Scholar 

  3. A. Midilli, I. Dincer, Key strategies of hydrogen energy systems for sustainability. Int. J. Hydrogen Energy 32(5), 511–524 (2007)

    Article  CAS  Google Scholar 

  4. N.Z. Muradov, T.N. Veziroğlu, “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrogen Energy 33(23), 6804–6839 (2008)

    Article  CAS  Google Scholar 

  5. W.W. Clark II., J. Rifkin, A green hydrogen economy. Energy Policy 34(17), 2630–2639 (2006)

    Article  Google Scholar 

  6. N.Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ionics 174(1–4), 271–277 (2004)

    Article  CAS  Google Scholar 

  7. S.J. Kim, M.-B. Choi, M. Park, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, S.-G. Kim, K.J. Yoon, Acceleration tests: degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures. J. Power Sources 360, 284–293 (2017)

    Article  CAS  Google Scholar 

  8. Q. Zhou, F. Wang, Y. Shen, T. He, Performances of LnBaCo2O5+x–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 195(8), 2174–2181 (2010)

    Article  CAS  Google Scholar 

  9. Y. Sakito, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, Y. Liu, Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 182(2), 476–481 (2008)

    Article  CAS  Google Scholar 

  10. D.J. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37(8), 1568–1578 (2008)

    Article  CAS  Google Scholar 

  11. S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 79, 750–764 (2017)

    Article  CAS  Google Scholar 

  12. H.I. Ji, J.H. Lee, J.W. Son, K.J. Yoon, S. Yang, B.K. Kim, Protonic ceramic electrolysis cells for fuel production: a brief review. J. Korean Ceram. Soc. 57, 480 (2020)

    Article  CAS  Google Scholar 

  13. S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202 (2018)

    Article  CAS  Google Scholar 

  14. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015)

    Article  CAS  Google Scholar 

  15. L. Jiang, T. Wei, R. Zeng, W.-X. Zhang, Y.-H. Huang, Thermal and electrochemical properties of PrBa0.5Sr0.5Co2−xFexO5+δ (x= 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J. Power Sources 232, 279–285 (2013)

    Article  CAS  Google Scholar 

  16. D. Jeong, A. Jun, Y.W. Ju, J. Hyodo, J. Shin, T. Ishihara, T.H. Lim, G. Kim, Structural, electrical, and electrochemical characteristics of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln= Pr, Sm, Gd) as cathode materials in intermediate-temperature solid oxide fuel cells. Energy Technol. 5(8), 1337–1343 (2017)

    Article  CAS  Google Scholar 

  17. D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin, P. Tsiakaras, A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance. Electrochim. Acta 210, 681–688 (2016)

    Article  CAS  Google Scholar 

  18. L.Q. Le, C.H. Hernandez, M.H. Rodriguez, L. Zhu, C. Duan, H. Ding, R.P. O’Hayre, N.P. Sullivan, Proton-conducting ceramic fuel cells: scale up and stack integration. J. Power Sources 482, 228868 (2021)

    Article  CAS  Google Scholar 

  19. H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K.J. Yoon, H. Kim, D. Shin, H.-I. Ji, J.-H. Lee, A 5× 5 cm2 protonic ceramic fuel cell with a power density of 13 W cm–2 at 600 °C. Nat. Energy 3(10), 870–875 (2018)

    Article  CAS  Google Scholar 

  20. C. Rossignol, J. Ralph, J.-M. Bae, J. Vaughey, Ln1−xSrxCoO3 (Ln= Gd, Pr) as a cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics 175(1–4), 59–61 (2004)

    Article  CAS  Google Scholar 

  21. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy. Compd. 494(1–2), 175–189 (2010)

    Article  CAS  Google Scholar 

  22. D. Agrawal, Microwave sintering of ceramics, composites and metallic materials, and melting of glasses. Trans. Indian Ceram. Soc. 65(3), 129–144 (2006)

    Article  CAS  Google Scholar 

  23. J. Fleig, Solid oxide fuel cell cathodes: polarization mechanisms and modeling of the electrochemical performance. Annu. Rev. Mater. Res. 33(1), 361–382 (2003)

    Article  CAS  Google Scholar 

  24. C.W. Tanner, K.Z. Fung, A.V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance: i. Theoretical analysis. J. Electrochem. Soc. 144(1), 21 (1997)

    Article  CAS  Google Scholar 

  25. H. Kim, Y.S. Chung, T. Kim, H. Yoon, J.G. Sung, H.K. Jung, W.B. Kim, L.B. Sammes, J.S. Chung, Ru-doped barium strontium titanates of the cathode for the electrochemical synthesis of ammonia. Solid State Ionics 339, 115010 (2019)

    Article  CAS  Google Scholar 

  26. Q. Xu, D.-p Huang, F. Zhang, W. Chen, M. Chen, H.-x Liu, Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4Co0.8Fe0.2O3−δ–Ce0.8Sm0.2O2−δ composite cathodes. J. Alloy. Compd. 454(1–2), 460–465 (2008)

    Article  CAS  Google Scholar 

  27. R. Li, L. Ge, H. Chen, L. Guo, Preparation and performance of triple-layer graded LaBaCo2O5+δ–Ce0.8Sm0.2O1.9 composite cathode for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 85, 273–277 (2012)

    Article  CAS  Google Scholar 

  28. T. Kenjo, T. Nakagawa, Ohmic resistance of the electrode-electrolyte interface in Au/YSZ oxygen electrodes. J. Electrochem. Soc. 143(4), L92 (1996)

    Article  CAS  Google Scholar 

  29. J. Smith, A. Chen, D. Gostovic, D. Hickey, D. Kundinger, K. Duncan, R. DeHoff, K. Jones, E. Wachsman, Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ionics 180(1), 90–98 (2009)

    Article  CAS  Google Scholar 

  30. J.S. Park, H.J. Choi, G.D. Han, J. Koo, E.H. Kang, D.H. Kim, K. Bae, J.H. Shim, High–performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium–rich interface coating. J. Power Sources 482, 229043 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Technology Development Program to Solve Climate Changes through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (2017M1A2A2044982), and the institutional research program of the Korea Institute of Science and Technology (Grant Nos. 2E30220 and 2V08440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Il Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, S., Lee, JH. & Ji, HI. PrBa0.5Sr0.5Co1.5Fe0.5O5+δ composite cathode in protonic ceramic fuel cells. J. Korean Ceram. Soc. 58, 351–358 (2021). https://doi.org/10.1007/s43207-021-00109-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00109-5

Keywords

Navigation